发布网友 发布时间:2024-09-07 03:08
共1个回答
热心网友 时间:2024-10-28 05:29
在线性方程组里基础解系线性无关,在特征向量里重根对应的特征向量却不一定线性无关。
一般情况下求特征值对应的特征向量都是求对应的线性方程组的线性无关的解(即基础解系),求基础解系的时候是把自由变量取了一组线性无关的值得出来的,但如果取的不是线性无关的,那么对应的特征向量(方程组的解)也就不一定是线性无关的了。
扩展资料
线性方程组有以下两种解法:
1、克莱姆法则:用克莱姆法则求解方程组有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。
用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。
2、矩阵消元法:将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵 ,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
参考资料:百度百科-线性方程组