YoloV7改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法_百度...
发布网友
发布时间:2024-09-07 10:16
我来回答
共1个回答
热心网友
时间:2024-09-24 21:31
我开始这篇文章,旨在分享对Drone-Yolo模型的深入研究和改良,这一模型在无人机数据集上取得了显著的进步。首先,我成功地复现了Drone-Yolo模型,它的mAP0.5指标在VisDrone2019-test上的提升达到了惊人的13.4%,而在VisDrone2019-val上,更是实现了17.40%的飞跃性增长,这无疑证实了其在小目标检测领域的强大性能。
在YoloV7的官方结果中,我聚焦于BiC模块的优化。该模块由三个输入和一个输出构成,我根据YoloV6的源代码,并结合YoloV7的特点,对BiC模块进行了适应性调整,以支持不同通道的数据输入和输出,具体代码实现展示了我的创新思考和实践。
通过实施这些改进,我在YoloV7中加入了BiC模块后的测试结果显示,性能得到了显著提升。我不仅复制了原作者的优秀成绩,甚至还超越了它,这无疑显示了我的方法具有很高的实用价值和竞争力。
接着,我对SF模块和网络结构进行了进一步的优化。这次调整不仅影响了mAP@.5的评价,同时对mAP@.5:.95也有着积极的影响,整体提升了模型的检测精度和鲁棒性。