sinacosb/sinbcosa=sin ²a/sin²b
发布网友
发布时间:2024-09-28 18:10
我来回答
共1个回答
热心网友
时间:2024-10-20 06:38
sin²A+sin²B-sin²Acos²B-2sinAcosBcosAsinB-cos²Asin²B
=(sin²A-sin²Acos²B)-2sinAcosBcosAsinB+(sin²B-cos²Asin²B)
=sin²A(1-cos²B)-2sinAcosBcosAsinB+sin²B(1-cos²A)
=sin²Asin²B-2sinAcosBcosAsinB+sin²Bsin²A
=2sin²Asin²B-2sinAcosBsinBcosA
=2sinAsinB(sinAsinB-cosBcosA)
=2sinAsinB[-cos(B+A)]
=2sinAsinBcosC
∵sin²A+sin²B-sin²Acos²B-2sinAcosBcosAsinB-cos²Asin²B=sinAsinB
∴2sinAsinBcosC=sinAsinB
∴cosC=1/2,
∴C=60°