...此定理?它的证明与其极限为常数这个情况证明应该不同吧
发布网友
发布时间:2024-09-27 11:23
我来回答
共1个回答
热心网友
时间:2024-10-02 00:43
==>lim(An)/(Bn)=L
设B(n)=n,A(n)=Sum_{k=1->n}ln[x(n)]
则ln(a)=lim_{n->+∞}{ln[x(n+1)]} = lim_{n->+∞}{A(n+1)-A(n)}/{B(n+1)-B(n)}
由Stolz定理,有
ln(a)=lim_{n->+∞}{A(n)/B(n)}=lim_{n->+∞}{Sum_{k=1->n}ln[x(n)]}/n
= lim_{n->+∞}(1/n)Sum_{k=1->n}ln[x(n)]
= lim_{n->+∞}ln{[x(1)x(2)...x(n)]^(1/n)}
因此,
lim_{n->+∞}[x(1)x(2)...x(n)]^(1/n) = e^[ln(a)] = a
热心网友
时间:2024-10-02 00:47
==>lim(An)/(Bn)=L
设B(n)=n,A(n)=Sum_{k=1->n}ln[x(n)]
则ln(a)=lim_{n->+∞}{ln[x(n+1)]} = lim_{n->+∞}{A(n+1)-A(n)}/{B(n+1)-B(n)}
由Stolz定理,有
ln(a)=lim_{n->+∞}{A(n)/B(n)}=lim_{n->+∞}{Sum_{k=1->n}ln[x(n)]}/n
= lim_{n->+∞}(1/n)Sum_{k=1->n}ln[x(n)]
= lim_{n->+∞}ln{[x(1)x(2)...x(n)]^(1/n)}
因此,
lim_{n->+∞}[x(1)x(2)...x(n)]^(1/n) = e^[ln(a)] = a