发布网友 发布时间:2024-09-28 03:08
共2个回答
热心网友 时间:2024-09-30 10:56
这个积分是积不出的,也就是不能表达为初等函数的有限表达式。在概率论中,我们可以求出它从负无穷到正无穷的定积分。对于一般数值的定积分,前人已经编制了表格,我们只要查表应用就可以了。
热心网友 时间:2024-09-30 10:56
结果为:√π解题过程如下:原式=∫e^(-x^2)dx=∫∫e^(-x^2-y^2) dxdy=∫∫e^(-r^2) rdrdα=(∫e^(-r^2) rdr)*(∫dα)=π*∫e^(-r^2) dr^2=π*(1-e^(-r^2) |r->+∝=π∵ ∫∫e^(-x^2-y^2) dxdy=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2∴∫e^(-x^2)dx=√π扩展资料求函数积分的方法:设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对F中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。