想考大数据分析师应该学什么?
发布网友
发布时间:2022-04-21 17:25
我来回答
共5个回答
热心网友
时间:2022-07-11 19:12
大数据分析师需要会以下几个技能:
1、首先最重要的就是需要有一定的计算机系统编程能力以及dmer 的熟练使用。
2、懂工具。能熟练地掌握数据分析相关的常用工具。在当今社会,数据只会越来越庞大,必须依靠强大的数据分析工具帮人们完成数据分析工作,所以掌握数据分析相关的常用工具很重要。
3、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
4、懂分析。数据分析师需要掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。
基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
更多关于数据分析师的信息建议咨询专业机构,CDA数据分析认证中心就很不错。CDA( Certified Data Analyst),是在数字济大背景和人工智能时代趋势下,源自中国,走向世界,面向全球全行业的专业技能证,旨在提升数字化人才的数据技能,助力企业数字化转型,推动行业数字化发展。
热心网友
时间:2022-07-11 19:12
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则
6.需要有一定的计算机,系统,编程能力。dmer 的熟练使用。
热心网友
时间:2022-07-11 19:13
大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。想要学习大数据分析,推荐选择十方融海。
1、统计概率理论基础:统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
2、软件操作结合分析模型进行实际运用:关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
3、数据挖掘或者数据分析方向性选择:其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别。
4、数据分析业务应用:这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。
想要了解更多关于大数据分析师的相关信息,推荐选择十方融海。十方融海作为新职业在线教育科技品牌,致力于培养数字时代所需的复合型人才,让每个人都能掌握一门技能,感受成长的力量。秉承“科技推动教育改革,教育创造美好生活”的理念,探索产教融合、*教育新模式,提升用户各项技能素养。
热心网友
时间:2022-07-11 19:13
数据分析师和大数据分析师是有本质区别的,虽然只是一字之差,但其中的含义和其本身的含金量与市场认知程度都相去甚远,目前国家正式承认的大数据分析师只有商务部开展的,项目名称就是大数据分析师培训,颁发的证书也是大数据分析师
热心网友
时间:2022-07-11 19:14
第一阶段: Python基础
第二阶段: 关系型数据库MySQL
第三阶段: 文档数据库MongoDB
第四阶段: 内存数据库Redis
第五阶段: 网络爬虫
第六阶段: 数据分析
第七阶段: 数据处理
第八阶段: 数据分析处理进阶
第九阶段: 项目实战