发布网友 发布时间:2022-05-10 03:59
共3个回答
热心网友 时间:2023-10-30 00:21
同解齐次线性方程组的秩一定相同。
两个线性方程组Ax=0与Bx=0同解,x是n维列向量解相同,所以可以有相同的极大无关组,也就是有相同的基础解系,基础解系所含的向量个数也是一样的但是Ax=0的基础解系所含向量个数是n-r(A)但是Bx=0的基础解系所含向量个数是n-r(B)所以 n-r(A)=n-r(B)从而 r(A)=r(B)
秩是线性代数术语,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。类似地,行秩是 A的线性无关的横行的极大数目。
扩展资料:
对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。
当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。
但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
参考资料来源:百度百科——齐次线性方程组
热心网友 时间:2023-10-30 00:21
同解齐次线性方程组的秩一定相同。
两个线性方程组Ax=0与Bx=0同解,x是n维列向量
解相同,所以可以有相同的极大无关组,也就是有相同的基础解系,
基础解系所含的向量个数也是一样的
但是Ax=0的基础解系所含向量个数是n-r(A)
但是Bx=0的基础解系所含向量个数是n-r(B)
所以 n-r(A)=n-r(B)
从而 r(A)=r(B)
秩是线性代数术语,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。类似地,行秩是 A的线性无关的横行的极大数目。
矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。通常表示为 rk(A) 或 rank A。
m× n矩阵的秩最大为 m和 n中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。
热心网友 时间:2023-10-30 00:22
两个线性方程组Ax=0与Bx=0同解,x是n维列向量