...ABC的角平分线,CD、BE相交于点O,则图中等腰三角形有(
发布网友
发布时间:2024-10-13 13:42
我来回答
共1个回答
热心网友
时间:2024-10-31 22:49
∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=180°?36°2=72°,
∵CD、BE是△ABC的角平分线,
∴∠ABE=∠CBE=∠ACD=∠BCD=∠A=36°,
∴AE=BE,AD=CD,OB=OC,
∴△ABC,△ABE,△ACD,△BOC是等腰三角形,
∵∠BEC=180°-∠ACB-∠CBE=72°,∠CDB=180°-∠ABC-∠BCD=72°,∠BOD=∠COE=∠CBE+∠BCD=72°,
∴∠BEC=∠BDC=∠ABC=∠ACB=∠BOD=∠COE=72°,
∴BD=OB,OC=CE,BC=BE=CD,
∴△BOD,△COE,△BCE,△CBD是等腰三角形.
∴图中的等腰三角形有8个.
故选C.