问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

这个是什么猜想?我忘了,谁能告诉我!!

发布网友 发布时间:2024-10-13 12:28

我来回答

5个回答

热心网友 时间:2024-10-22 04:42

要理解哥德尔定理,先得理解集的概念。
(一) 集合
“集合”或集的描述:集这个概念,是不可
以精确定义的数学基本概念之一,故只能作
描述:凡具有某种特殊性质对象的汇集,其
总合被称为集。
例:一组数(可能是无限的),一群人,一栏
鸡蛋。
在作数学上具体研究时,组成集的个体,被
称为“元”的其他特殊属性,如鸡的特性,
人的特性,数的特性,都不再考虑。于是,
一个集合就被抽象成A,它的元被抽象成x。
我们有
x 属于 A
我们也归定:
A 不能属于 A
即A不能是A自己的一元,这个规定不是不合
理的,例如,所有的书所组成的集不是书!
所以所有书的集合不能是这个集合的一元。
A 的某一部份B也可自行构造出一集,被称
为A之“子集”。
我们有
B 含于 A
特殊情况:B可以等于A,B也可以没有元素,
被称为“空集”,我们称这样两种情况叫住
A的“平凡”子集。
定义:对等
设A,B分别为两个集,如果A和B之间能建立
1-1的对应关系,则我们称:
A 对等于 B
反之亦然。
对等是集与集之间最基本的关系。若A和B都
含有限个元,则两集之间要对等,当且仅当
二者的元的数目相等。
如果A和B都是无限的,则也能/不能建立对等
关系,如两个无限数列A和B:
A:1,2,3,。。。
B:2,4,6,。。。
就能建立1-1对应,故
A 对等于 B
可以证明,任何两个无限数列的集合都能对
等。
但是,有些无限集之间却不能对等。
例:设实数轴0到1之间的所有有理数所组成
的集为R,又设0到1之间所有的无理数所组成
的集为I,则可证明(略):
1。R和I之间不对等;
2。R对等于I中的一个非平凡子集,在这样的
情况下, 综合1。,我们说
R 小于 I
3。R 对等于 一个自然数序列
数目在无限大时候的推广。我们称上述A有“势”
为可数势,意味着,A的元数目可以一个一个地
数下去,虽然不一定能数完。于是,自然数序列
集具有可数势,任何有限集合也有可数势,而且,
由上面的3。可知有理数集也有可数势。
再从1。的结论可知,无理数的集有大于可数势
的势,我们称这个势为“不可数势”!
(二) “康脱悖论”
设M是一个集,这个集的元是由集合X所组成,其
中,X 不属于 X。
康脱悖论:M 不属于 M 同时 M 属于 M
事实上,如果M属于M,则由定义,M不属于M;反
过来,如果M不属于M,则同样由定义,M属于M。
这就出现了悖论,这个悖论首先由康脱提出来,
它类似于“塞维尔村理发师悖论”,1902年,罗
素又把它在叙述上修改了一下,把它作为一种悖
论,用来说明集合论的形式公理体系建立的必要。
康脱悖论的发现,引起了十九世纪末的数学界很
大的震动,原因在一切数学的推理和由推理得出
的结论最终可以由“与、或、非”三种基本逻辑
运算所构成的组合操作,而这些组合操作的集合
本身构成了矛盾,于是所有数学成就的整个大厦
开始动摇!
其后,罗素等人提出了形式(逻辑)公理体系,试
图甩掉那些悖论,让数学在无悖论的情况下发展
(事实上,至今数学里还没有这样的悖论的干扰)。
办法就是,如怀特海所说,当一个形式逻辑体系
出现康脱悖论时,就用一个更大的逻辑体系去把
它包了,换句话说,就是让原先那个逻辑体系作
为更大的逻辑体系的子集合。当然这样做的结果,
新的母体系又产生了不可避免的矛盾。怀特海问:
就这样一层一层地包下去,以致于无穷,是否就
可避免了矛盾?
(三) 哥德尔不完备性定理浅释
哥德尔不完备性定理的提出和证明就是为了解决
怀特海上述猜想,它指出:使用层层外延法扩张
形式逻辑体系并不能清除其总和的矛盾!
哥德尔最妙的想法就是把一切逻辑运算视作一种
二进制代码(CODE),就例如,“与”可对应为1,
“或”可对应为10,“非”可对应为11。但这些
二进制数却被他再转换成小数,如0.1,0.01,
0.11,组合逻辑运算不过是这三种码的组合,也
就是更复杂的小数。
递归:逻辑运算里有一种调用自身的运算,称为
“递归”。递归术语今天是编程算法里最基本的
运算方法之一。递归有两种结局:1。终止于有
限次数的操作;2。无限递归下去,在编程上被
称为死循环。
当逻辑体系按照怀特海的办法延拓到一个新的,
更大的逻辑体系时,旧的逻辑体系中的操作如果
被新的体系调用,就会出现递归,递归有时是无
限次数的(这是允许的,不象计算机运算不允许),
在此情况下,由二进制代码所代表的逻辑运算将
出现无限循环的小数。
这样,哥德尔就用递归把每一次形式逻辑体系的
外延后的操作,用有限小数和无限循环小数代
表出来,而且他还证明了,这种代表是唯一对应
的,也就是说,每一二进制有限小数或无限循
环小数皆唯一对应于怀特海意义下的无限扩张逻
辑体系下的某一逻辑操作。
二进制与十进制:二进制数与十进制数之间能建
立起唯一对应关系,因之,实轴上0-1的一端(剃
除掉两个端点,0、1)的所有小数都可以由二进
制小数表出,而且,两种进位制里的有限小数和
无限循环小数都对应。
有理数和无理数:任何有限小数和无限不循环小
数都属于0-1之间的有理数。0-1数段的实数除了
全部含于其中的有理数以外,还存在着无理数,
例如2分之2的平方根。如果我们表0-1数段的所
有有理数集合为Ro,表剩下的所有无理数集合为
Io,则可证明:
Ro 对等于 R;
Io 对等于 I
这里的R、I见(一)中例的定义。因此,我们遂有
Ro有可数势,而Io有不可数势。
哥德尔证明了:怀特海意义下的无限延拓形式逻
辑体系的所有逻辑操作所组成的集合与Ro之间能
够建立起1-1的对应关系,也就是说,这两个集
合对等,因此,它们有相同的势。即都具有可数
势。
但是,如果我们把0-1间任意一个无理数对应成
一个逻辑操作,因为它无限不循环,这个操作是
我们不能确定的,但却能有限截断后知道的,我
们就可以理解成不能用确定的逻辑操作去解决的,
或者换个口吻,说成是矛盾。
于是,哥德尔就得出了结论,形式逻辑分析不能
用来解决认识中的所有出现的矛盾,更有甚者,
我们由Io的不可数势的性质看到,这样的矛盾远
多于形式逻辑分析所能解决的数量!
哥德尔定理证明的独到之处,在于用数学反过来
证明逻辑分析问题,前面我们已经看到,数学上
已经确定了的推理本来是可被拆成基本逻辑操作
来推理的。罗素曾有个想法,认为所有数学的推
理都可拆开成基本的逻辑运算去实现,好象是数
学可以变成逻辑学似的,今天的哲学界数学界摈
弃了罗素这个想法,认为这是不可能的。

热心网友 时间:2024-10-22 04:40

歌德尔不完备性定理。

说的是, 任何一种公理体系,都存在一个命题,它既不能证明也不能证伪。

应用到法律上,就是说:“任何法律都存在漏洞, 即, 总有一种行为,你既不能说明这种行为合法,也不能说它违法”---因此需要把此行为定义为一种新的法律条款。 但是新的法律体系仍然会有漏洞。。。。。。

热心网友 时间:2024-10-22 04:39

歌德尔不完备性定理吧

热心网友 时间:2024-10-22 04:38

我想是歌德尔不完备性定理.

热心网友 时间:2024-10-22 04:37

哥德尔不完备性定理
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
电脑分辨率设置多少合适笔记本电脑分辨率多少最佳 各尺寸笔记本电脑的最佳分辨率 2022年高考480到510分能上山东科技大学吗 朋友借了我一万块钱,现在坐牢了怎么还钱? 天王星和海王星虽然看似一对姊妹星,但还是有区别 ...值得收藏吗?现在分别只都多少钱,照片上有一个铜币的 谁能告诉我这是一枚什么样的铜币,值不值钱? 有谁知道这铜币值不值钱,懂家告诉我一下!谢谢 有谁知道这个铜钱的来历 可以进行异地公积金贷款吗 电脑突然蓝屏重启了 代码是0x000004e 谁能告诉我是什么问题 个人... ...可大了,这个是啥啊?谁知道告诉我一下,谢谢, 易饱和互感器怎么设计 封闭母线分相封闭母线 纽曼t7用数据线连接电脑一定要u盘吗怎么找平板电脑里的文件啊我怎么都... 纽曼u盘不认 ...总是一帧一帧的,各种驱动全是新的,请大神解决 纽曼M99平板电脑怎么读U盘 mate7荣耀7哪个好 xbox360光盘刻录问题,有图。 有一种梅花是蓝色的 ...恶心 迷糊 四肢无力 食欲不振 胸闷 一听到噪音就心烦气短 还坏肚子... 同程旅行发的限高令真的有效吗 4乘以 (4又根号3)等于多少 带根号的乘法怎么算?比如4乘以4倍根号3 3×4倍根号三等于多少? 14乘以4根号3分之84等于多少?要解析过程!谢谢~ 14乘以4根号3等于多少 56根号3分之84等于多少? 株洲市芦淞区地方税务局机构设置 株洲市规划局内设机构 谁能告诉我这是什么问题怎么解决 4岁小孩流鼻血是什么原因引起的 请问小女孩(4岁多)爱流鼻血,有时不多,但有时流得很多,为什么?谢谢_百度... 4岁小孩经常流鼻血是什么原因 4岁孩子流鼻血是什么原因 网络用语茶颜悦色是什么意思 ...求各路感情高手给予完美的答案!回答的满意可加分。 工作中怎样主动表达自己? 怀孕和宫外孕症状区别 怎样判断宫内孕宫外孕 宫外孕早期症状 房山区【碧岸澜庭】共有产权房,1万人申请 但我猜这个共有产权房卖不完... 英雄联盟高手进阶,怎么成为英雄联盟高手 英雄联盟如何变高手? 怎么成为英雄联盟的高手? 英雄联盟怎么玩才算是高手? 吸血鬼骑士里玖兰李土的能力 华为C8650手机中可安装程序这么删除?我开始先下个软件装上了,然后卸... 华为C8650如何删除下载软件 华为c8650应用程序安装里面的软件怎么删除如题 谢谢了 买理财产品比存银行好吗,理财产品有什么风险