发布网友 发布时间:2024-10-12 16:59
共5个回答
热心网友 时间:2024-10-30 04:02
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.热心网友 时间:2024-10-30 03:56
甲乙两人玩纸牌游戏,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张,甲取了15次,乙取了17次两人一边多,问纸牌至少多少张热心网友 时间:2024-10-30 03:58
是新初二的?呵呵,本人也想问哪……热心网友 时间:2024-10-30 03:57
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.热心网友 时间:2024-10-30 03:56
设甲取了x张4张,乙取了y次6张(y≥1,0<k<4)热心网友 时间:2024-10-30 04:01
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.热心网友 时间:2024-10-30 04:00
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张,则甲取牌(60-ka)张,乙取牌(102-kb)张则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b-a)=42,而0<k<4,b-a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去;②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b-a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3×18+162=108张.故答案为:108.热心网友 时间:2024-10-30 04:02
设甲取了x张4张,乙取了y次6张(y≥1,0<k<4)热心网友 时间:2024-10-30 04:03
甲乙两人玩纸牌游戏,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张,甲取了15次,乙取了17次两人一边多,问纸牌至少多少张热心网友 时间:2024-10-30 04:01
是新初二的?呵呵,本人也想问哪……