已知∫xf(x)dx=x³㏑x+c,求∫f(x)dx
发布网友
发布时间:2024-10-13 09:57
我来回答
共2个回答
热心网友
时间:2024-10-25 16:59
∫xf(x)dx=x³㏑x+c,
求导,xf(x)=3x^2*㏑x+x^2,
f(x)=3x*㏑x+2x
∫f(x)dx=∫(3x*㏑x+2x )dx
=∫3/2*㏑x dx^2 +1/3*x^3
=1/3*x^3+3/2*㏑x*x^2-3/2∫x^2*1/x*dx
=1/3*x^3+3/2*㏑x*x^2-3/2∫xdx
=1/3*x^3+3/2*㏑x*x^2-3/4*x^2+C
=3/2*x^2*㏑x+1/3*x^3-3/4*x^2+C
热心网友
时间:2024-10-25 17:02
∫xf(x)dx=x³㏑x+c
对上式两边对 x求导得
xf(x)=3x^2lnx+x^2
f(x)=3xlnx+x
∫f(x)dx
=∫(3xlnx+x)dx
=(x^2)/2+3/2*∫lnxdx^2
=(x^2)/2+3/2*x^2lnx-3∫xdx
=(x^2)/2+3/2*x^2lnx-3/4*x^2+C
=3/2*x^2lnx-1/4*x^2+C