∫ e^2x sinx dx 求过程.. 谢谢..
发布网友
发布时间:2024-10-08 20:53
我来回答
共2个回答
热心网友
时间:2024-11-26 08:21
∫ e^2x sinx dx =1/2·∫ e^2x sinx d2x = 1/2·e^2x sinx - 1/2·∫ e^2x cosx dx = 1/2·e^2x sinx - 1/4·e^2x cosx - 1/4·∫ e^2x sinx dx
5/4·∫ e^2x sinx dx = 1/2·e^2x sinx - 1/4·e^2x cosx
∫ e^2x sinx dx = 2/5·e^2x sinx - 1/5·e^2x cosx
∫ e^2x sinx dx = 1/5·e^2x·(2sinx - cosx)
热心网友
时间:2024-11-26 08:22
t=∫ e^2x sinx dx
=-∫ e^2x dcosx
=-e^2x *cosx+∫ cosxd e^2x
=-e^2x *cosx+2∫e^2x d sinx
=-e^2x *cosx+2(e^2x *sinx-∫sinx d e^2x)
=-e^2x *cosx+2(e^2x *sinx-2∫e^2x *sinxdx)
=-e^2x *cosx+2*e^2x *sinx-4∫e^2x *sinxdx
=-e^2x *cosx+2*e^2x *sinx-4t
则5t=-e^2x *cosx+2*e^2x *sinx
t=(-e^2x *cosx+2*e^2x *sinx)/5
=[e^2x * (2sinx-cosx)]/5