高一 数学 解三角形2 请详细解答,谢谢! (11 18:24:42)
发布网友
发布时间:2024-10-09 03:41
我来回答
共2个回答
热心网友
时间:2024-10-09 16:20
(1).
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
(2).
b=根号13,a+c=4
cosB=-1/2=(a^2+c^2-b^2)/2ac=[(a+c)^2-2ac-b^2]/2ac
=(16-2ac-13)/2ac
=(3-2ac)/2ac
所以:
3-2ac=-ac
ac=3
所以由a+c=4,ac=3可以解得
a=3或者a=1
热心网友
时间:2024-10-09 16:24
a/sinA=b/sinB=c/sinC
所以-b/(2a+c)=-sinB/(2sinA+sinC)=cosB/cosC
-sinBcosC=2sinAcosB+cosBsinC
2sinAcosB+cosBsinC+sinBcosC=0
2sinAcosB+sin(B+C)=0
sin(B+C)=sin(180-A)=sinA
所以2sinAcosB+sinA=0
因为0<A<180
所以sinA不等于0
所以2cosB+1=0
cosB=-1/2
B=120度
cosB=-1/2=(a^2+c^2-b^2)/2ac
a^2+c^2-13=-ac
a+c=4,a^2+2ac+c^2=16,a^2+c^2=16-2ac
所以16-2ac-13=-ac
ac=3,a+b=4
所以a=1,c=3或a=3,c=1
即a=1或3