多目标优化算法:非支配麻雀搜索算法(Non-Dominated Sorting SSA)
发布网友
发布时间:2024-10-11 05:09
我来回答
共1个回答
热心网友
时间:2024-12-14 19:06
麻雀搜索算法(SSA)是一种用于解决函数优化问题的启发式搜索算法。其原理基于麻雀在觅食过程中的行为,通过模拟群体智能进行优化搜索。具体实现和代码细节可参考相关博客资源。
为进一步提升SSA在多目标优化领域的表现,引入了非支配麻雀搜索算法(NSSSA)。该算法不仅继承了SSA的群体智能特性,更在处理多目标问题时展现出优越性能。NSSSA通过非支配排序机制,有效解决了多目标优化问题中的帕累托前沿寻优问题。实际应用中,该算法被广泛应用于各种多目标测试函数以及工程应用中,如盘式制动器设计。
实验结果表明,NSSSA在处理ZDT1到ZDT6、DTLZ1至DTLZ7、WFG1至WFG10、UF1至UF10、CF1至CF10、Kursawe、Poloni、Viennet2、Viennet3等多目标测试函数时,表现出了出色的优化能力。在工程应用如盘式制动器设计中,NSSSA也展现出显著的优化效果。
评估指标IGD(Inverted Generational Distance)、GD(Generalized Distance)、HV(Hypervolume)和SP(Space Filling)的评价结果显示,NSSSA在多目标优化问题上的性能优于传统方法,能够更高效地探索和近似帕累托前沿。
完整MATLAB实现的NSSSA代码,为研究者和工程师提供了一种有效工具,用于解决复杂多目标优化问题。该算法的灵活性和适应性,使其在多种实际应用中展现出显著优势。