高2数学题,在线等!
发布网友
发布时间:2024-10-11 10:43
我来回答
共2个回答
热心网友
时间:2024-10-13 17:16
奇函数f(x)=-f(-x) f'(x)=f'(-x) 偶函数g(x)=g(-x) g'(x)=-g'(-x)
f(x)+g(x)=1/e^x -------------------求导-------------- f'(x)+g'(x)=-1/e^x
f(-x)+g(-x)=1/e^(-x)=e^x ---------------求导--------------- -f'(-x)-g'(-x)=e^x
上面两式相加消f(x),f(-x) 上面两式相加消f'(x),f'(-x)
g(x)+g(-x)=2g(x)=e^x+1/e^x 上面的两步求导不会算 g'(x)-g'(-x)=2g'(x)=(-1/e^x)+e^x
两式相减消g(x),g(-x) 在这把f(x),g(x)分别算出 两式相减消g'(x),g(-x)
f(x)-f(-x)=2f(x)=(1/e^x)-e^x 再求导也行 f'(x)+f'(-x)=2f'(x)=(-1/e^x)-e^x
观察得到的这四个式子,不难发现f(x)+g'(x)=0 f'(x)+g(x)=0
热心网友
时间:2024-10-13 17:15
第四个