发布网友 发布时间:2024-10-04 18:51
共1个回答
热心网友 时间:2024-10-20 07:24
都不是充要条件,数列收敛一定有界,但有界数列不一定收敛,例如an=(-1)^n是有界的,但不收敛.对于函数来说,不但有界不一定收敛,而且在某点收敛的函数只具有局部有界性,即函数在x0点收敛只能保证在x0的某个去心邻域内有界.都不是充要条件,数列收敛一定有界,但有界数列不一定收敛,例如an=(-1)^n是有界的,但不收敛.对于函数来说,不但有界不一定收敛,而且在某点收敛的函数只具有局部有界性,即函数在x0点收敛只能保证在x0的某个去心邻域内有界.
函数有界是函数收敛的充要条件吗都不是充要条件,数列收敛一定有界,但有界数列不一定收敛,例如an=(-1)^n是有界的,但不收敛。对于函数来说,不但有界不一定收敛,而且在某点收敛的函数只具有局部有界性,即函数在x0点收敛只能保证在x0的某个去心邻域内有界。
有界数列是收敛数列必要但不充分条件对吗?必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然是有界的,但也是发散的。所以有界不是收敛的充分条件。有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间...
数列有界和收敛的关系是什么?收敛的函数一定有界,但有界不一定收敛,收敛是有界的充分不必要条件。数列收敛则一定有界。 请注意这里是数列,而不是函数。例子:数列{1/x}(x\u003e0),x是正整数,当然有上界且有下界。注意数列的定义域都是正整数。要看是不是正向级数,是的话是充分必要条件,不是的话,是前者是后者的充分条...
有界一定收敛吗?函数收敛不一定有界,因为有界的充要条件是既有上界又有下界。收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn...
有界数列收敛的充要条件是什么对于函数(数列)极限而言,都没有说有界与收敛的充要条件。因为某个函数(数列)有界,其收敛的充分条件因问题不同而不同。一般而言只有有界到收敛的充分条件:比如:1.单调递增函数(数列)有界必然收敛。但是无法推出收敛就一定单调。2.夹逼准则 以及其他一些充分(不必要)条件 这个问题的充要条件其实...
数列的有界性是数列收敛的什么条件?证明数列有界是数列收敛的必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛,有界数列是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。如果数列有极限,则数列是有界的,数列有界...
数列有界是收敛的必要条件吗?如何证明呢?收敛与有界的关系图解:数列有界是数列收敛的条件是必要而不充分条件。收敛介绍如下:收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。条件收敛,指的是技术给定其他条件一样的话,人均产出低的国家,相对于人均...
收敛和有界的关系是什么?如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。相关内容解释 一、有界函数的性质:1、单调性。闭区间上的单调函数必有界。其逆命题不成立。2、连续性。闭区间上的连续函数必有界。其逆命题不...
有界函数是收敛数列的充分不必要条件吗?必要不充分条件