...logx4(0<x<1),数列{a}的通项a满足f(2的an次方)=2n(n属于N*)_百度...
发布网友
发布时间:2024-10-03 22:22
我来回答
共2个回答
热心网友
时间:2024-11-14 00:42
(1)
f(x)=log2X-logx4=log2X-log2(4)/log2X
=log2X-2/log2X
f(2的an次方)=2n
即log2(2的an次方)-2/log2(2的an次方)=an-2/an=2n
an^2-2n·an-2=0 (1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+2)
(2)an=n-√(n^2+2)=-2/[n+√(n^2+2)] 分子有理化!
a(n+1))=-2/[n+1+√[(n+1)^2+2]>-2/[n+√(n^2+2)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0
热心网友
时间:2024-11-14 00:46
(1)
f(x)=log2X-logx4=log2X-log2(4)/log2X
=log2X-2/log2X
f(2的an次方)=2n
即log2(2的an次方)-2/log2(2的an次方)=an-2/an=2n
an^2-2n·an-2=0
(1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+2)
(2)an=n-√(n^2+2)=-2/[n+√(n^2+2)]
分子有理化!
a(n+1))=-2/[n+1+√[(n+1)^2+2]>-2/[n+√(n^2+2)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0
热心网友
时间:2024-11-14 00:47
(1)
f(x)=log2X-logx4=log2X-log2(4)/log2X
=log2X-2/log2X
f(2的an次方)=2n
即log2(2的an次方)-2/log2(2的an次方)=an-2/an=2n
an^2-2n·an-2=0 (1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+2)
(2)an=n-√(n^2+2)=-2/[n+√(n^2+2)] 分子有理化!
a(n+1))=-2/[n+1+√[(n+1)^2+2]>-2/[n+√(n^2+2)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0
热心网友
时间:2024-11-14 00:49
(1)
f(x)=log2X-logx4=log2X-log2(4)/log2X
=log2X-2/log2X
f(2的an次方)=2n
即log2(2的an次方)-2/log2(2的an次方)=an-2/an=2n
an^2-2n·an-2=0
(1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+2)
(2)an=n-√(n^2+2)=-2/[n+√(n^2+2)]
分子有理化!
a(n+1))=-2/[n+1+√[(n+1)^2+2]>-2/[n+√(n^2+2)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0