发布网友 发布时间:2024-10-03 17:46
共0个回答
解:∵a[1]=3,a[n]a[n-1]=2a[n-1]-1 ∴a[n]=2-1/a[n-1]∴a[2]=5/3,a[3]=7/5,a[4]=9/7 证明:∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x 即:x^2-2x+1=0 ∴x=1 ∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点1】...
已知数列{an}满足a1=3,anan-1=2an-1-1.(1)求a2,a3,a4;(2)求证:数列{1...当n=3时,a3a2=2a2-1,即a3=2-1a2=75,当n=4时,a4a3=2a3-1,即a4=2-1a3=97,证明:(2)由题意得an≠0且an≠1∵anan-1=2an-1-1.∴(an-1-1)-(an-1)=(an-1-1)(an-1)∴1an?
已知数列{an}满足a1=3,anan-1=2an-1-1,(1)求证{1/an-1}是等差数列(2)所以,1/(an-1)=1/(a1 -1) +n-1, a1=3 得到: an=(2n+1)/(2n-1)所以:bn=1/(2n-1)(2n+1)拆分得:bn=0.5[1/(2n-1) - 1/(2n+1)]所以,Sn=b1+b2+b3...+bn=0.5[1-1/3 +1/3 -1/5 +1/5...-1/(2n+1) ]中间的项消掉。Sn = 0.5*[1-1/(2n...
已知数列{an}满足a1=3,anan-1=2an-1-1.(1)求a2,a3,...解答:解:(1)∵a1=3,anan-1=2an-1-1.当n=2时,a2a1=2a1-1,即a2=2- 1 a1 = 5 3 ,当n=3时,a3a2=2a2-1,即a3=2- 1 a2 = 7 5 ,当n=4时,a4a3=2a3-1,即a4=2- 1 a3 = 9 7 ,证明:(2)由题意得an≠0且an≠1 ∵anan-1=2an-1-1.∴(an-1-1)-(an...
已知数列{an}满足a1=3,an?an-1=2an-1-1(1)求a2,a3,a4;(2)求证:数列{1...(1)解:∵an?an-1=2an-1-1,a1=3∴a2a1=2a1-1,∴a2=53同理a3=75,a4=97___(3分)(2)证明:易知an-1≠0,所以an=2?1an?1___
已知数列{AN}满足A1=3,An*A(n-1)=2A(n-1)-1A(n-1)不可能是等差数列.由A1=3,An*A(n-1)-2A(n-1)-1 可以得到 An=(2n+1)/(2n-1),n >= 1 A2 = 5/3,A3 = 7/5,A4 = 9/7
已知数列{an}满足a1=3,an×an-1=2an-1-1(n∈正整数,n≥2)求a2,a3,an=[2a(n-1)-1]/a(n-1)=2- 1/a(n-1)a1=3,a2=2-1/a1=2-1/3=5/3 a3=2-1/a2=2-3/5=7/5 a4=2-1/a3=2-5/7=9/7 , ...,an=(2n+1)/(2n-1)
已知数列an满足a1=3k an*an-1=2 *an-1-1(n≥2) 第一问 求a2 a3an*a(n-1)=2a(n-1)-1 n=2 a2.a1=2a1-1 a2= (6k-1)/(3k)n=3 a3.a2= 2a2-1 a3 = {2[(6k-1)/(3k)] -1}/[(6k-1)/(3k)]= (9k-2)/(6k-1)n=4 a4.a3= 2a3-1 a4 = {2[(9k-2)/(6k-1)] -1}/[(9k-2)/(6k-1)]= (12k-3)/(9k-2)an*a(n-1)=...
...1,An=3^(n-1)+A(n-1).(1).求A2,A3; (2).证明:An=(3^n-1)/2_百度...很明显这是个差后等比数列。An=3^(n-1)+A(n-1)a2=3+a1=4 a3=3^2+a2=13 a2-a1=2 a3-a3^2 ...an-an-1=3^(n-1)两边相加得 an-a1=3+3^2+...+3^(n-1)an=3^0+3+3^2+...+3^(n-1)=(3^n-1)/2
...满足a1=3,an+1=an2-2nan+2.(1)求a2,a3,a4;(2)先猜想出{an}的一个...(1)由条件an+1=a2n-2nan+2,依次得a2=a21-2a1+2=5,a3=a22-4a2+2=7,a4=a23-6a3+2=9,…(6分)(2)由(1),猜想an=2n+1.…(7分)下用数学归纳法证明之:①当n=1时,a1=3=2×1+1,猜想成立; …(8分)②假设当n=k时,猜想成立,即有ak=2k+1,…(9分...