...3的圆,点C为⊙O上一动点,连接OC,过O点作OD⊥OC,OD与⊙
发布网友
发布时间:2024-10-04 00:14
我来回答
共1个回答
热心网友
时间:2024-10-04 10:28
(1)解:∵Rt△AOB中OA=OB=6,
∴∠OBA=∠A=45°,
当C点在OB左侧,AO上面时,当OC∥AB时,∠ABO=∠BOC,则∠BOC的度数为45°,
当C点在OB右侧,AO下面时,当OC∥AB时,∠BOC的度数为:90°+45°=135°,
故答案为:45°或135°;
(2)证明:如图2,∵OC∥AD,∠AOB=90°
∴∠ADO=∠COD=∠AOB=90°,
∴∠1+∠2=90°∠3+∠2=90°
∴∠1=∠3
在△BOC和△AOD中,
OC=OD∠BOC=∠AODBO=AO,
∴△BOC≌△AOD(SAS),
∴∠BCO=∠ADC=90°,
∴OC⊥BC,
∴直线BC为⊙O的切线;
(3)解:当点C在⊙O上运动到∠AOB的平分线OE的反向延长线与⊙O的交点位置C时,
△ABC的面积最大,(如图3)
过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,
此时C点到AB的距离的最大值为CE的长,
∵△OAB为等腰直角三角形,∴AB=2 OA=62,
∴OE=AB=32,OC=3
∴CE=OC+CE=3+32,
△ABC的面积=CE?AB=12×(3+32)×6