有一个数除以3余2,除以5余3,除以7余4,除以9余5.这个数至少是___
发布网友
发布时间:2024-10-03 23:29
我来回答
共2个回答
热心网友
时间:2024-10-28 19:38
(5、7)=35;(3、7)=21;(3、5)=15;(3、5、7)=105.
35正好除以3余2;为了使21除以5余3,则21×3=63;为了使15除以7余4,则15×4=60.
所以35+63+60-105=53.即:除以3余2,除以5余3,除以7余4”的最小数是53.
因此“除以3余2,除以5余3,除以7余4,除以9余5”的最小数是:53×3-1=158.
故答案为158.
热心网友
时间:2024-10-28 19:38
观察余数,
余数减去0.5以后,正好是除数的一半
那么被除数减去0.5,所得的差再乘2,就正好能被3,5,7,9整除
3,5,7,9的最小公倍数为:
5×7×9=315
所求的最小数为:
315÷2+0.5=158
热心网友
时间:2024-10-28 19:38
(5、7)=35;(3、7)=21;(3、5)=15;(3、5、7)=105.
35正好除以3余2;为了使21除以5余3,则21×3=63;为了使15除以7余4,则15×4=60.
所以35+63+60-105=53.即:除以3余2,除以5余3,除以7余4”的最小数是53.
因此“除以3余2,除以5余3,除以7余4,除以9余5”的最小数是:53×3-1=158.
故答案为158.
热心网友
时间:2024-10-28 19:38
观察余数,
余数减去0.5以后,正好是除数的一半
那么被除数减去0.5,所得的差再乘2,就正好能被3,5,7,9整除
3,5,7,9的最小公倍数为:
5×7×9=315
所求的最小数为:
315÷2+0.5=158