...﹡),则称数列{an}是“等方差数列”.已知数列{bn}是公差
发布网友
发布时间:2024-10-02 17:50
我来回答
共1个回答
热心网友
时间:2024-11-06 01:34
由数列{bn}是公差为m的等差数列及m=0
得bn=b1,bn+12-bn2=0,数列{bn}是等方差数列;
由数列{bn}是公差为m的等差数列及数列{bn}是等差数列
得bn+12-bn2=(b1+nm)2-[b1+(n-1)m]2=2b1m+(2n-1)m2=d对任意的n∈N*都成立,
令n=1与n=2别得2b1m+m2=d,2b1m+3m2=d,
两式相减得m=0.
综上所述,m=0是数列{bn}是等方差数列的充分必要条件.
故答案为:充要条件