发布网友 发布时间:2024-10-02 15:46
共1个回答
热心网友 时间:2024-11-13 11:52
存在N1,使得当n>N1时,有n>a,则当n>N1时,有[a∧n-N1/(n!/N1!)]<=[(a/N1)∧n-N1],令[a∧N1/N1!]=δ,N=[ln(ε/δ)ln(a/N1)]+N1,当n>N时,有[a∧n/n!]<=δ*a∧n-N1/(n!/N1!)]<=δ*[(a/N1)∧n-N1]<ε。即证。有疑问请追问,满意请采纳~\(≧▽≦)/~追答修改下,N=[ln(ε/δ)/ln(a/N1)]+N1