已知Y=AX立方减2AX平方+B在区间负2到1的最大值是5,最小值是负11...
发布网友
发布时间:2024-10-01 23:09
我来回答
共1个回答
热心网友
时间:2024-10-17 13:32
解:函数Y
=
AX
3
–
2AX
2
+
B在[-2,1]上的最大值是5,最小值是
-11,求导可得Y
’
=
3AX
2
–
4AX
=
AX(3X
–
4),对A的值分类讨论可得:
1)如果A
=
0,那么Y
=
B是常值函数,不符题意,舍去;
2)如果A
>
0,那么当X
<
0或者X
>
4/3时,Y
’
=
AX(3X
–
4)
>
0,所以原函数在X
<
0或者X
>
4/3上单调递增;
当0
<
X
<
4/3时,Y
’
=
AX(3X
–
4)
<
0,所以原函数在0
<
X
<
4/3上单调递减;
本题中X∈[-2,1],所以原函数在
-2
<
X
<
0上单调递增,在0
<
X
<
1上单调递减,所以当X
=
0时,Y
max
=
B
=
5
;
原函数在X
=
-2或者X
=
1处取到最小值:
当X
=
-2时,Y
=
A(-2)
3
–
2A(-2)
2
+
B
=
-8A
–
8A
+
B
=
B
–
16A
=
5
–
16A
;
当X
=
1时,Y
=
A*1
3
–
2A*1
2
+
B
=
A
–
2A
+
B
=
B
–
A
=
5
–
A
;
而A
>
0,因此16A
>
A,进而
-16A
<
-A,可知5
–
16A
<
5
–
A,因此当X
=
-2时,Y
min
=
5
–
16A
=
-11,移项可得16
=
16A,所以A
=
1,代入可得Y
=
X
3
–
2X
2
+
5
;
3)如果A
<
0,那么当X
<
0或者X
>
4/3时,Y
’
=
AX(3X
–
4)
<
0,所以原函数在X
<
0或者X
>
4/3上单调递减;
当0
<
X
<
4/3时,Y
’
=
AX(3X
–
4)
>
0,所以原函数在0
<
X
<
4/3上单调递增;
本题中X∈[-2,1],所以原函数在
-2
<
X
<
0上单调递减,在0
<
X
<
1上单调递增,所以当X
=
0时,Y
min
=
B
=
-11
;
原函数在X
=
-2或者X
=
1处取到最大值:
当X
=
-2时,Y
=
A(-2)
3
–
2A(-2)
2
+
B
=
-8A
–
8A
+
B
=
B
–
16A
=
-11
–
16A
;
当X
=
1时,Y
=
A*1
3
–
2A*1
2
+
B
=
A
–
2A
+
B
=
B
–
A
=
-11
–
A
;
而A
<
0,因此16A
<
A,进而
-16A
>
-A,可知-11
–
16A
>
-11
–
A,因此当X
=
-2时,Y
min
=
-11
–
16A
=
5,移项可得
-16
=
16A,所以A
=
-1,代入可得Y
=
-X
3
+
2X
2
–
11
;
综上所述,原函数的解析式为
Y
=
X
3
–
2X
2
+
5
,或者
Y
=
-X
3
+
2X
2
–
11
。
热心网友
时间:2024-10-17 13:31
解:函数Y
=
AX
3
–
2AX
2
+
B在[-2,1]上的最大值是5,最小值是
-11,求导可得Y
’
=
3AX
2
–
4AX
=
AX(3X
–
4),对A的值分类讨论可得:
1)如果A
=
0,那么Y
=
B是常值函数,不符题意,舍去;
2)如果A
>
0,那么当X
<
0或者X
>
4/3时,Y
’
=
AX(3X
–
4)
>
0,所以原函数在X
<
0或者X
>
4/3上单调递增;
当0
<
X
<
4/3时,Y
’
=
AX(3X
–
4)
<
0,所以原函数在0
<
X
<
4/3上单调递减;
本题中X∈[-2,1],所以原函数在
-2
<
X
<
0上单调递增,在0
<
X
<
1上单调递减,所以当X
=
0时,Y
max
=
B
=
5
;
原函数在X
=
-2或者X
=
1处取到最小值:
当X
=
-2时,Y
=
A(-2)
3
–
2A(-2)
2
+
B
=
-8A
–
8A
+
B
=
B
–
16A
=
5
–
16A
;
当X
=
1时,Y
=
A*1
3
–
2A*1
2
+
B
=
A
–
2A
+
B
=
B
–
A
=
5
–
A
;
而A
>
0,因此16A
>
A,进而
-16A
<
-A,可知5
–
16A
<
5
–
A,因此当X
=
-2时,Y
min
=
5
–
16A
=
-11,移项可得16
=
16A,所以A
=
1,代入可得Y
=
X
3
–
2X
2
+
5
;
3)如果A
<
0,那么当X
<
0或者X
>
4/3时,Y
’
=
AX(3X
–
4)
<
0,所以原函数在X
<
0或者X
>
4/3上单调递减;
当0
<
X
<
4/3时,Y
’
=
AX(3X
–
4)
>
0,所以原函数在0
<
X
<
4/3上单调递增;
本题中X∈[-2,1],所以原函数在
-2
<
X
<
0上单调递减,在0
<
X
<
1上单调递增,所以当X
=
0时,Y
min
=
B
=
-11
;
原函数在X
=
-2或者X
=
1处取到最大值:
当X
=
-2时,Y
=
A(-2)
3
–
2A(-2)
2
+
B
=
-8A
–
8A
+
B
=
B
–
16A
=
-11
–
16A
;
当X
=
1时,Y
=
A*1
3
–
2A*1
2
+
B
=
A
–
2A
+
B
=
B
–
A
=
-11
–
A
;
而A
<
0,因此16A
<
A,进而
-16A
>
-A,可知-11
–
16A
>
-11
–
A,因此当X
=
-2时,Y
min
=
-11
–
16A
=
5,移项可得
-16
=
16A,所以A
=
-1,代入可得Y
=
-X
3
+
2X
2
–
11
;
综上所述,原函数的解析式为
Y
=
X
3
–
2X
2
+
5
,或者
Y
=
-X
3
+
2X
2
–
11
。