已知z属于复数,z的模为,z不等于正负1,求证:z-1/z+1是纯虚数
发布网友
发布时间:2024-10-01 19:06
我来回答
共3个回答
热心网友
时间:2024-10-17 14:03
设z=a+bi,且a²+b²=1
(z-1)/(z+1)
=(a+bi-1)/(a+bi+1)
=(a-1+bi)/(a+1+bi)
=(a-1+bi)(a+1-bi)/(a+1+bi)(a+1-bi)
=[a+(bi-1)][(a-(bi-1)]/[(a+1)²+b²]
=[a²-(bi-1)²]/(a²+2a+1+b²)
=2bi/(2a+2)
=bi/(a+1)
即z-1/z+1是纯虚数
热心网友
时间:2024-10-17 14:06
设z=cost+isint (t≠kπ)
则(z-1)/(z+1)=(cost-1+isint)/(cost+1+isint)
=(cost-1+isint)(cost+1-isint)/(cos^2(t)+2cost+1+sin^2(t))
=(cos^2(t)-(1-2isint-sin^2(t))/(2+2cost)
=(cos^2(t)-1+2isint+sin^2(t))/(2+2cost)
=isint/(1+cost)
所以是纯虚数(sint≠,1+cost≠0)
热心网友
时间:2024-10-17 14:04
证:lzl=1,设z=cosa+isina a∈(0,2π]
则(z-1)/(z+1)
=[(cosa-1)+isina]/[(1+cosa)+isina]
=[(cosa-1)+isina][(1+cosa)-isina]/[(1+cosa)+isina][(1+cosa)-isina]
=[(cos²a-1)+(isina)(1+cosa)-isina(1+cosa)+sin²a]/[(1+cosa)²-(isina)²]
=0
∴(z-1)/(z+1)为实数。