发布网友 发布时间:2024-10-02 04:51
共1个回答
热心网友 时间:2024-10-20 02:18
由10000至99999这90000个五位数中,共有30000个能被3整除的数.逐位讨论数字可能的情况:在最高位上,不能为0和6,因此有8种可能情况.在千、百、十位上不能为6,各有9种可能情况,在个位上,不仅不能为6,还应使整个五位数被3整除,因此,所出现的数字应与前4位数字之和被3除的余数有关:当余数为2时,个位上可为1,4,7中的一个;当余数为1时,个位上可为2,5,8中的一个;当余数为0时,个位上可以为0,3,9中的一个.总之,不论前4位数如何,个位上都有3种可能情况,所以由乘法原理知,这类五位数的个数为8×9×9×9×3=17496,因此,含数字6而又被3整除的五位数有30000-17496=12504个.热心网友 时间:2024-10-20 02:20
由10000至99999这90000个五位数中,共有30000个能被3整除的数.逐位讨论数字可能的情况:在最高位上,不能为0和6,因此有8种可能情况.在千、百、十位上不能为6,各有9种可能情况,在个位上,不仅不能为6,还应使整个五位数被3整除,因此,所出现的数字应与前4位数字之和被3除的余数有关:当余数为2时,个位上可为1,4,7中的一个;当余数为1时,个位上可为2,5,8中的一个;当余数为0时,个位上可以为0,3,9中的一个.总之,不论前4位数如何,个位上都有3种可能情况,所以由乘法原理知,这类五位数的个数为8×9×9×9×3=17496,因此,含数字6而又被3整除的五位数有30000-17496=12504个.