【机器学习】K-means(非常详细)
发布网友
发布时间:2024-10-01 20:58
我来回答
共1个回答
热心网友
时间:2小时前
K-means,作为常用的基于欧式距离的聚类算法,其核心理念是相似性度量。算法的灵感来源于“牧师-村民模型”,想象四个牧师在郊区布道,村民们依据自己家的位置选择最近的布道点,牧师们则根据村民分布调整布道点。每次调整后,都会寻找新的平衡点,直到每个村民都接近最近的中心。
算法步骤如下:首先,随机选择k个初始中心点(即布道点)。接着,计算每个样本点到所有中心点的距离,将其归入最近的类别。然后,根据每个类别的所有点计算新的中心点。这个过程重复进行,直至中心点不再改变,或者满足预设的停止条件,如最大迭代次数或中心点位置变化小于阈值。
时间复杂度方面,伪代码显示为[公式],其中t为迭代次数,k为簇数,n为样本点数,m为特征维度。空间复杂度则为[公式],与簇数k和特征维度m有关,样本点数n影响较小。
K-means的优缺点明显:优点在于简单易懂且计算效率高,但选择合适的簇数K是个挑战,可能导致局部最优解。对此,可以进行数据预处理,如归一化或异常值检测,以及通过如手肘法、Gap statistic等方法选择K值。此外,通过核函数和K-means++等改进策略,可以适应非球形分布和优化初始聚类中心选取。
最后,K-means与EM算法有着紧密联系,它在每个迭代步骤中模拟了EM算法的E步(期望最大化)和M步(最大似然估计)。然而,EM算法的局部极小值问题是K-means的一个固有局限性。
热心网友
时间:2小时前
K-means,作为常用的基于欧式距离的聚类算法,其核心理念是相似性度量。算法的灵感来源于“牧师-村民模型”,想象四个牧师在郊区布道,村民们依据自己家的位置选择最近的布道点,牧师们则根据村民分布调整布道点。每次调整后,都会寻找新的平衡点,直到每个村民都接近最近的中心。
算法步骤如下:首先,随机选择k个初始中心点(即布道点)。接着,计算每个样本点到所有中心点的距离,将其归入最近的类别。然后,根据每个类别的所有点计算新的中心点。这个过程重复进行,直至中心点不再改变,或者满足预设的停止条件,如最大迭代次数或中心点位置变化小于阈值。
时间复杂度方面,伪代码显示为[公式],其中t为迭代次数,k为簇数,n为样本点数,m为特征维度。空间复杂度则为[公式],与簇数k和特征维度m有关,样本点数n影响较小。
K-means的优缺点明显:优点在于简单易懂且计算效率高,但选择合适的簇数K是个挑战,可能导致局部最优解。对此,可以进行数据预处理,如归一化或异常值检测,以及通过如手肘法、Gap statistic等方法选择K值。此外,通过核函数和K-means++等改进策略,可以适应非球形分布和优化初始聚类中心选取。
最后,K-means与EM算法有着紧密联系,它在每个迭代步骤中模拟了EM算法的E步(期望最大化)和M步(最大似然估计)。然而,EM算法的局部极小值问题是K-means的一个固有局限性。