无理数分为什么
发布网友
发布时间:2022-05-07 07:07
我来回答
共1个回答
好二三四
时间:2022-07-16 00:50
无理数分为正无理数和负无理数。无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律(目前没发现有什么规律),所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
好二三四
时间:2022-08-23 00:44
无理数分为正无理数和负无理数。无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律(目前没发现有什么规律),所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:19
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:19
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:19
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:19
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:19
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:20
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:20
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友
时间:2024-08-03 17:20
无理数分为正无理数和负无理数。
无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。