已知实数x、y满足x^2+y^2=1,则3x^2-x+4y^2的最小值
发布网友
发布时间:2024-10-07 06:27
我来回答
共5个回答
热心网友
时间:2024-11-26 21:44
3x^2-x+4y^2=3x^2-x+(1-x^2)=2x^2-x+1=2(x^2-0.5x)+1
=2(x-0.5x+0.25^2-0.25^2)+1
=2(x-0.25)^2-0.0625*2+1
=2(x-0.25)^2+0.875
当x=0.25 存在最小值0.875
y^2=1-0.25^2=0.9375
y=根号0.9375 or y=-根号0.9375
热心网友
时间:2024-11-26 21:44
y^2=1-x^2>=0
所以-1<=x<=1
把y^2=1-x^2代入
3x^2-x+4y^2
=-x^2-x+4
=-(x+1/2)^2+17/4
-1<=x<=1
所以x=1,3x^2-x+4y^2最小=2
热心网友
时间:2024-11-26 21:45
y^2=1-x^2>=0
所以-1<=x<=1
把y^2=1-x^2代入
3x^2-x+4y^2
=-x^2-x+4
=-(x+1/2)^2+17/4
-1<=x<=1
所以x=1,3x^2-x+4y^2最小=2
热心网友
时间:2024-11-26 21:45
可设x=cosa,y=sina,原式=-(cosa+1/2)^2+17/4.显然,当cosa=1时,原式有最小值2.
热心网友
时间:2024-11-26 21:46
x^2+y^2=1
y^2=1-x^2
3x^2-x+4(1-x^2)=3x^2-x+4-4x^2
=-x^2-x+4=-(x^2+x)+4
=-(x^2+x+1/4-1/4)+4
=-(x+1/2)^2+17/4
-1<=x<=1
当x=1 最小 =2