发布网友 发布时间:2024-10-06 21:05
共1个回答
热心网友 时间:2024-11-30 01:49
双曲线f1,f2固定左右边吗,如下
平面内与两定点F1、F2的距离的差的绝对值为常数2a的动点P的轨迹叫做双曲线,其中2a<|F1F2|。
当双曲线的焦点在X轴上时,Y轴左边的为左支,Y轴右边的为右支。设双曲线的左右焦点分别为F1、F2,那么双曲线上的点为P,如果|PF1|-|PF2|>0,则点p在右支上,反之在左支上。
双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。是平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹。
一般的,双曲线(希腊语“Υπερβολία”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。
这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。
双曲线是由平面和双锥相交形成的三种圆锥截面之一。其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况,如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
双曲线出现在许多方面:
作为在笛卡尔平面中表示函数的曲线;作为日后的阴影的路径;作为开放轨道(与闭合的椭圆轨道不同)的形状,例如在行星的重力辅助摆动期间航天器的轨道,或更一般地,超过最近行星的逃逸速度的任何航天器。
作为一个单一的彗星(一个旅行太快无法回到太阳系)的路径;作为亚原子粒子的散射轨迹,以排斥而不是吸引力作用,但原理是相同的;在无线电导航中,当距离到两点之间的距离而不是距离本身可以确定时,等等。
双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。
所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线的情况下,渐近线是两个坐标轴。