6.设u=xyz,而z=z(x,y)是由方程 x^3+y^3+z^3-3xyz=0 所确定的隐函求
发布网友
发布时间:2024-10-06 04:51
我来回答
共1个回答
热心网友
时间:2024-10-16 13:19
根据题目中所给的方程:
x^3 + y^3 + z^3 - 3xyz = 0
将u=xyz代入上式,得:
x^3 + y^3 + u^3/(x^3 y^3) - 3u = 0
整理化简得:
u^3 + 3u - x^3 y^3 (x^3 + y^3) = 0
令f(u) = u^3 + 3u - x^3 y^3 (x^3 + y^3),则所求的偏导数为:
∂u/∂x = (df/du)/(df/dx)
对f(u)求偏导数:
f'(u) = 3u^2 + 3
对x求偏导数:
∂f/∂x = -3x^2 y^3 (x^3 + y^3)
因此,
∂u/∂x = -f'(u)/∂f/∂x = -(3u^2 + 3)/(-3x^2 y^3 (x^3 + y^3)) = (u^2 + 1)/(x^2 y^3 (x^3 + y^3))
同理可得,
∂u/∂y = (u^2 + 1)/(x^3 y^2 (x^3 + y^3))
∂u/∂z = (3u^2)/(x^3 y^3)
因此,由隐函数定理可知,z(x,y)在(x,y)处可微,且
∂z/∂x = -∂u/∂x / ∂u/∂z = -(u^2 + 1)/(3u^2 x^2 y^3)
∂z/∂y = -∂u/∂y / ∂u/∂z = -(u^2 + 1)/(3u^2 x^3 y^2)
将u=xyz代入上式,得
∂z/∂x = -(x^2 y^2 + 1)/(3x^2 y^3)
∂z/∂y = -(x^2 y^2 + 1)/(3x^3 y^2)
因此,z=z(x,y)的偏导数为:
∂z/∂x = -(x^2 y^2 + 1)/(3x^2 y^3)
∂z/∂y = -(x^2 y^2 + 1)/(3x^3 y^2)