发布网友 发布时间:2024-10-06 14:10
共1个回答
热心网友 时间:2024-10-15 22:49
选择②补充到题目,即a5是a2和a6的等比中项,即a5/a2=a6/a5
由Sn=nan+n(n-1),可知:
S1=a1,S2=2a2+2,S3=3a3+6,S4=4a4+12,...
a2=S2-S1=2a2+2-a1,a1=a2+2,
a3=S3-S2=3a3+6-2a2-2,2a2=2a3+4,
a2=a3+2
a4=S4-S3=4a4+12-3a3-6,3a3=3a4+6,
a3=a4+2
所以,数列为: a1,a1-2,a1-4,a1-6,...,a1-2(n-1),...
a2=a1-2,a5=a1-8,a6=a1-10
因为 a5/a2=a6/a5,所以
(a1-8)/(a1-2)=(a1-10)/(a1-8)
(a1)^2-16a1+64=(a1)^2-12a1+20
4a1=44,所以a1=11
数列是:a0=0,11,9,7,5,3,1,-1,-3,...
S0=0,S1=11,S2=20,...,Sn,...
所以,在S0,S1,S2,S3,...,Sn,...中最大值是S6=36