发布网友 发布时间:2024-10-06 14:22
共1个回答
热心网友 时间:2024-10-08 09:11
【ICLR2021】探索文本生成新领域:CoCon——自监督下的可控文本生成技术
在2021年的国际计算机视觉与模式识别大会(ICLR)上,一篇引人瞩目的论文《CoCon: A Self-Supervised Approach for Controlled Text Generation》崭露头角。研究人员们借鉴了CTRL和PPLM的创新理念,提出了一个名为CoCon的革命性模块,旨在通过自监督的方式,实现对文本生成的精确控制。
CoCon的核心在于其独特的设计,它巧妙地嵌入到Transformer的编码器结构中,与传统的Transformer编码器结构保持一致。在生成文本时,控制部分(c)和目标句子(s)被巧妙地分割,其中c的长度为,而s被划分为和两个部分。作者们通过精心设计的流程,首先分别编码c和s,然后利用CoCon模块的自我注意力机制,将c的Key和Value整合到s的Key和Value中,同时保留s的Query不变。这个过程生成的隐变量,包含了c的信息,然后被用于指导Transformer的解码阶段,生成出满足控制要求的文本。
尽管CoCon的解码策略可能会让人初看有些费解,但其背后的逻辑是:通过将c和s的信息融合,模型既能保证生成的内容包含c的控制信息,又能确保与s的流畅衔接。作者提出的Cycle loss是论文的一大亮点,它通过让模型在不同提示下生成文本,旨在训练模型生成既能包含c信息又与前文无缝连接的句子,这在实践中能有效应对多样性的文本衔接需求。
此外,训练过程中,作者采用了四种精心设计的损失函数,包括重构loss、Null Content Loss、Cycle loss和Adversarial loss,它们各自针对不同的目标进行优化。实验结果显示,CoCon在控制文本的sentiment和topic方面表现出色,尤其在GPT-2生成的语料上,显示出更强的控制力。
尽管目前CoCon的开源代码还未公开,但作者们对于技术的探索并未止步。可以预见的是,随着ICLR2021的深入讨论,CoCon的代码和更多细节将逐步揭开面纱,为文本生成领域带来新的突破。对于对该领域感兴趣的朋友,不妨关注我的公众号【天宏NLP】,第一时间获取最新的科研动态与解析。