发布网友 发布时间:2024-10-06 03:13
共0个回答
n2Sn?1=n(n?1),∴n+1nSn?nn?1Sn?1=1,对n≥2成立. …(3分)又1+11S1=1,∴{n+1nSn}是首项为1,公差为1的等差数列.n+1nSn=1+(n?1)?1…(5分)∴Sn=n2n+1…(6分)(2)证明:bn=Snn3+3n=1(n+1)(n+3)=12(1n+1?1n+3)…(...
设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,求an则nSn+(n+2)an=4n 则Sn=4-(n+2)/nan=4-an-2an/n 则S(n+1)=4-a(n+1)-2a(n+1)/(n+1)两式相减 得a(n+1)=an-a(n+1)+2an/n-2a(n+1)/(n+1)即[2+2/(n+1)]a(n+1)=(1+2/n)an 即(2n+4)/(n+1)a(n+1)=((n+2)/n)an 即a(n+1)=(n+1)/2na...
设数列{an}的前n项和为Sn,已知a1=1,a(n+1)=(n+2)/n,求数列{sn/n}是...设数列{an}的前n项和为Sn,已知a1=1,且a(n+1)=(n+2)/n sn ,求证:数列{sn/n}是等比数列。证明:因为A(n+1) =(n+2)/n * Sn 所以Sn =n*A(n+1) / (n+2)S(n-1) = (n-1)*An / (n+1)所以An = Sn -S(n-1) = n/(n+2) *A(n+1) - (n-1)/(n+1...
数列{an}的前n项和为Sn,a1=4,an+1=2nSn.数列{bn}满足b1=b2=1.Sn(bn+...2×…×a2a1=nn?1×n?1n?2×…×21=n,n≥2,∴an=4n(n≥2).∵a1=4满足上式,∴an=4n.∵{an}是等差数列,Sn=(4+4n)n2=2n(n+1),∴2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,bn+2bn?bn+12bn+1bn=?12n(n+1),∴...
已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1...证:由a1=1,an+1=[(n+2)/n]Sn(n=1,2,3)知a2=3a1 S2/2=4a1/2=2 S1/1=1 ∴(S2/2)/(S1/1)=2 又an+1=Sn+1-Sn(n=1,2,3,…)则Sn+1-Sn=[(n+2)/n]Sn ∴nSn+1=2(n+1)Sn (Sn+1/n+1)/(Sn/n)=2(n=1,2,3,…)故数列{Sn/n}是首项为1,公比...
11. 已知数列{an}的前n项和为Sn,a1=1,且an= 2Sn2Sn- 1 (n≥2),求数 ...1/(sn-1)-1/sn=4 所以1/sn为公差为-4的等差数列 1/sn=1/s1+(n-1)*(-4) 因为1/s1=1/a1=1 1/sn=5-4n sn=1/(5-4n)an=sn-sn-1=1/(5-4n)-1/(5-4(n-1))an=[(9-4n)-(5-4n)]/[(5-4n)(9-4n)]an=4/[(5-4n)(9-4n)] (n=>2)
已知{an}前n项和为Sn,a1=二分之一,Sn=n^2an-n(n-1),n=1,2,3...--n-1/1-n n+1/n Sn --n/n-1 Sn-1=1 所以数列{((n+1)/n)Sn是等差数列 S1=a1. n+1/n Sn=2S1+n-1=n 所以Sn=n^2/n+1 证明:bn=1/n(n+1)=1/n -1/n+1 b1+b2+b3+...+bn=1-1/2+1/2-1/3+...1/n-1/n+1 =n/n+1 <1 ...
数列an的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn.求证:(1)数列{Sn/n}...(1)an+1=(n+2)/nSn,即S(n+1)-Sn=(n+2)/nSn,化简可得S(n+1)/(n+1)=2(Sn/n),即证得数列{Sn/n}是等比数列;(2)由(1)可知Sn=n*2^(n-1),可求出an=(n+1)*2^(n-2),即可证得S(n+1)=4an.
已知数列an的前n项和为Sn,a1=2,Sn=n^2+n,求an通项公式.设1/Sn的前...(1)n≥2时,an=Sn-S(n-1)=n²+n-(n-1)²-(n-1)=2n.又a1=2,所以an=2n.(2)1/Sn=1/[n(n+1)]=1/n-1/(n+1).所以Tn=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]=1-1/(n+1)<1.
数列<an>的前n项和为Sn,a1=1,且nSn+1=(n+2)Sn(n∈N☆)nS(n+1)=(n+2)Sn S(n+1)/Sn = (n+2)/n Sn/S(n-1) = (n+1)/(n-1)Sn/S1 = (n+1)n/2 Sn = (n+1)n/2 an = Sn -S(n-1)= n