已知函数f(x)=sin(wx+φ),其中w>0,|φ|<π/2,若cosπ/4cosφ-sin(3π...
发布网友
发布时间:2024-10-06 08:05
我来回答
共3个回答
热心网友
时间:2024-11-15 08:12
(cosπ/4cosφ) -sin(3π/4)*sinφ=0
(cosπ/4cosφ)-(sinπ/4sinφ)=0
cos(π/4+φ)=0
热心网友
时间:2024-11-15 08:06
------------cosπ/4cosφ-sin(3π/4)sinφ=0
因为sin(π-φ)=sinφ
所以sin(π-π/4)=sin(π/4)
--------------------------------cosπ/4cosφ-sinπ/4sinφ=0
--------------------------------cos(π/4+φ)=0
热心网友
时间:2024-11-15 08:08
由cos(π/4)cosφ-sin(3π/4)sinφ=0,又sin(3π/4)=sin(π-3π/4)=sin(π/4),则原式可化为cos(π/4)cosφ-sin(π/4)sinφ=0,则有cos(π/4+φ)=0
即cosπ/4cosφ-sin(3π/4)sinφ=cos(π/4)cosφ-sin(π/4)sinφ
=cos(π/4+φ)
=0
即利用sinφ=sin(π-φ),cosacosφ-sinasinφ=cos(a+φ)