发布网友 发布时间:2024-10-08 07:16
共1个回答
热心网友 时间:2024-10-08 07:34
你的问题,泰勒公式展开不足!
x->0
分子
e^(tx) = 1+tx +(1/2)(tx)^2 +o(x^2)
√(1+2tx+2x^2)
= 1+ (1/2)(2tx+2x^2)-(1/8)(2tx+2x^2)^2 +o(x^2) 你的没有这项
= 1+ (1/2)(2tx+2x^2)-(1/8)(4t^2.x^2+o(x^2)) +o(x^2)
=1+tx + (1- (1/2)t^2)x^2 +o(x^2)
e^(tx) -√(1+2tx+2x^2)
=[1+tx +(1/2)(tx)^2 +o(x^2)]-[1+tx + (1- (1/2)t^2)x^2 +o(x^2)]
= (t^2-1)x^2+o(x^2)
x.[e^(tx) -√(1+2tx+2x^2)] = (t^2-1)x^3+o(x^3)
分母
tanx =x +(1/3)x^3+o(x^3)
sin2x=2x -(1/6)(2x)^3 +o(x^3) = 2x- (4/3)x^3+o(x^3)
x+tanx-sin2x = (5/3)x^3+o(x^3)
//
lim(x->0) x[e^(tx) -√(1+2tx+2x^2)]/(x+tanx-sin2x)
=lim(x->0) (t^2-1)x^3/ [(5/3)x^3]
=(3/5)(t^2-1)