(2014?汕尾)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于...
发布网友
发布时间:2024-10-07 15:15
我来回答
共1个回答
热心网友
时间:2024-10-07 15:54
证明:(1)如图,连接OD.
∵DE为切线,
∴∠EDC+∠ODC=90°;
∵∠ACB=90°,
∴∠ECD+∠OCD=90°.
又∵OD=OC,
∴∠ODC=∠OCD,
∴∠EDC=∠ECD,
∴ED=EC;
∵AC为直径,
∴∠ADC=90°,
∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,
∴∠B=∠BDE,
∴ED=DB.
∴EB=EC,即点E为边BC的中点;
(2)∵AC为直径,
∴∠ADC=∠ACB=90°,
又∵∠B=∠B
∴△ABC∽△CDB,
∴ABBC=BCBD,
∴BC2=BD?BA;
(3)当四边形ODEC为正方形时,∠OCD=45°;
∵AC为直径,
∴∠ADC=90°,
∴∠CAD=∠ADC-∠OCD=90°-45°=45°
∴Rt△ABC为等腰直角三角形.