求不定积分 x*e^x/((e^x-1)^2)dx 具体式子里面有图片
发布网友
发布时间:2024-10-07 18:26
我来回答
共1个回答
热心网友
时间:2024-11-14 04:49
设e^x-1=t,dx=dt/(1+t)
原式=∫[ln(1+t)*(1+t)*dt/(1+t)]/t^2
=∫ln(1+t)dt/t^2
=∫ln(1+t)*d(-1/t)
=ln(1+t)*(-1/t)-∫dt/[(1+t)(-t)]
=ln(1+t)*(-1/t)+∫dt/t-∫dt/(1+t)
=ln(1+t)*(-1/t)+ln|t/(1+t)|+c
=ln(1+t)*(-1/t)-ln[t/(1+t)]+c
=[x/(1-e^x)]-ln(e^x-1)+x+c