f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的什么
发布网友
发布时间:2024-10-03 15:28
我来回答
共1个回答
热心网友
时间:2024-10-26 23:51
证明:若f(0)=0,则F(0)=f(0)=0
F`(0)=lim<h→0>[F(h)-F(0)]/(h-0)
=lim<h→0>[f(h)(1+|sinh|)]/h
=lim<h→0>f(h)/h
=lim<h→0>[f(h)-f(0)]/h
=f`(0)
即F(X)在x=0处可导;
若F(X)在x=0处可导,即
F`(0)=lim<h→0>[F(h)-F(0)]/(h-0)
=lim<h→0>[f(h)(1+|sinh|)-f(0)]/h
=lim<h→0>[f(h)-f(0)]/h+lim<h→0>[f(h)|sinh|]/h
=f`(0)+lim<h→0>[f(h)|sinh|]/h
因为F`(0)与f`(0)都存在,所以lim<h→0>[f(h)|sinh|]/h存在,
故lim<h→0>f(h)=0,即f(0)=0