发布网友 发布时间:2024-10-03 07:02
共2个回答
热心网友 时间:2024-10-05 06:55
连结BE、CG,
∵PQ是△BEC的中位线,
∴PQ//BE,且PQ=BE/2,
同理MN//BC,MN=BE/2,
∴MN=PQ,且MN//PQ,
∴四边形PQMN是平行四边形,
同理MQ=PN=CG/2,
在△BAE和△GAC中,
BA=GA,
AC=AE,
∵〈BAG=〈CAE=90°,
〈BAG+〈BAC=〈CAE+〈BAC,
∴〈BAE=〈GAC,
∴△BAE≌△GAC,(SAS),
∴BE=CG,
∴BE/2=CG/2,
∴PQ=MQ,
∴四边形PQMN是菱形,
设CG和BE相交于O
〈AEB=〈ACG,(全等三角形对应角相等),
则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆)
〈EOC=〈EAC=90°,
∴BE⊥CG,
∴PQ⊥MQ,
∴四边形PQMN是正方形。
热心网友 时间:2024-10-05 06:53
http://i159.photobucket.com/albums/t145/l421013/MATH2/NM-1.png