...α,点D是BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转α后到达...
发布网友
发布时间:2024-10-02 22:15
我来回答
共1个回答
热心网友
时间:2024-10-19 22:12
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°.
∵∠DAB=α-∠DAC,∠EAC=α-∠DAC,
∴∠EAC=∠DAB.
又AB=AC,AD=AE,
∴△DAB≌△EAC.
∴∠ECA=∠B=45°.
∴β=∠ACB+ECA=90°.
(2)α+β=180°.
证明:∵∠BAC=∠DAE=α,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
又AB=AC,AD=AE,
∴△ABD≌△ACE.
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β.
∵α+∠B+∠ACB=180°,
∴α+β=180°.
(3)当点D在线段BC的反向延长线上运动时,(2)中的结论不能成立,此时:α=β成立.
其理由如下:
类似(2)可证∴△DAB≌△ECA,
∴∠DBA=∠ECA,
又由三角形外角性质有∠DBA=α+∠DCA,
而∠ACE=β+∠DCA,
∴α=β.
热心网友
时间:2024-10-19 22:10
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°.
∵∠DAB=α-∠DAC,∠EAC=α-∠DAC,
∴∠EAC=∠DAB.
又AB=AC,AD=AE,
∴△DAB≌△EAC.
∴∠ECA=∠B=45°.
∴β=∠ACB+ECA=90°.
(2)α+β=180°.
证明:∵∠BAC=∠DAE=α,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
又AB=AC,AD=AE,
∴△ABD≌△ACE.
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β.
∵α+∠B+∠ACB=180°,
∴α+β=180°.
(3)当点D在线段BC的反向延长线上运动时,(2)中的结论不能成立,此时:α=β成立.
其理由如下:
类似(2)可证∴△DAB≌△ECA,
∴∠DBA=∠ECA,
又由三角形外角性质有∠DBA=α+∠DCA,
而∠ACE=β+∠DCA,
∴α=β.