高数,零点定理,这个函数周期是l吗?
发布网友
发布时间:2024-10-02 21:28
我来回答
共1个回答
热心网友
时间:2024-10-06 09:10
零点定理:
设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)×
f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。
证明:不妨设f(a)<0,f(b)>0.令
E={x|f(x)<0,x∈[a,b]}.
由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,
存在ξ=supE∈[a,b].
下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,
(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知
存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,
这与supE为E的上界矛盾;
(ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知
存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,
这又与supE为E的最小上界矛盾。
综合(i)(ii),即推得f(ξ)=0。
高数,零点定理,这个函数周期是l吗?
零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。证明:不妨设f(a)<0,f(b)>0.令 E={x|f(x)<0,x∈[a,b]}.由f(a)<0知E≠Φ,且b为...
零点集零点集性质
另一方面,辐角原理揭示了全纯函数f(z)的直观特性。当z沿着边界绕一圈回到原点,函数f(z)的像点会绕一个圈数,这个圈数等于零点个数减去极点个数(同样考虑重根)。这个原理有助于我们理解函数的周期性和局部行为。最后,希尔伯特零点定理是关于代数闭域k上的多项式方程组的重要结果。如果f_1=...=...
高三数学有哪些知识点
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。3、函数零点定理使用不当致误 如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,...
专升本函授高等数学讲解:函数、极限和连续的考点有哪些?
有界性定理 最大值与最小值定理 介值定理(包括零点定理)(4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。(2)会求函数的间断点及确定其类型。(3)掌握在闭区间上连续函数的性质,会用介...
如何判断一个函数在开区间内有界?
运用零点定理或魏尔斯特拉斯判别法:对于函数f(x)在开区间(a,b)上连续,且f'(x)在开区间(a,b)上单调有界,则可以运用零点定理或魏尔斯特拉斯判别法来判断函数在开区间内有界。运用极限存在准则:如果函数f(x)在开区间(a,b)上可导,且f'(x)在开区间(a,b)上有界,则可以运用...
考研数学中 有的学校考 高等数学(B),这个指的什么意思,教材是什么...
函数连续的概念 左连续与右连续 函数的间断点 连续函数的四则运算法则复合函数的连续性 反函数的连续性 初等函数的连续性 闭区间上连续函数的性质(最大值、最小值定理,零点定理) 2.考试要求 (1) 理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。(2) 掌握连续函数的四则运算法则。(3) 了解复合...
函数在[a,b]连续(a,b)可导,f'(x)≠0,f(b)>f(a)能否说明函
达布定理,又名导函数零点定理或导函数介值定理,在考研数学中频繁出现,是解决相关问题的关键工具。此定理表明,如果函数在闭区间[a, b]上连续,且在开区间(a, b)内可导,则其导函数在该区间内必存在零点。直接运用达布定理,可避免繁琐的证明过程。简化形式:若函数f在闭区间[a, b]上连续,在开...
高中函数的题型,及如何复习?
首先要简单复习一下函数的各种性质(单调性、最大最小值、周期性、奇偶性等),接着回顾一下各种初等函数(二次函数、指数函数、对数函数、幂函数等,重点掌握二次函数的性质,因为经常会用到二次函数函数的性质,尤其是关于它的根的分布一定要掌握),再者要复习一下零点定理和函数的求导,导函数是一...
专升本函授高等数学(一)考哪些内容?
(2)函数在一点处连续的性质 连续函数的四则运算 复合函数的连续性 反函数的连续性 (3)闭区间上连续函数的性质 有界性定理 最大值与最小值定理 介值定理(包括零点定理)(4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含...
高中导数知识点总结大全
第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<> 第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的...