1/1*2*3+1/2*3*4+1/3*4*5=的公式
发布网友
发布时间:2024-10-02 20:22
我来回答
共1个回答
热心网友
时间:2024-10-18 23:34
1/n(n+1)(n+2)=1/2*2/n(n+1)(n+2)
=1/2*(n+2-n)/n(n+1)(n+2)
=1/2*[(n+2)/n(n+1)(n+2)-n/n(n+1)(n+2)]
=1/2*[1/n(n+1)-1/(n+1)(n+2)]
1/1*2*3+1/2*3*4+1/3*4*5=1/2*(1/1*2-1/2*3)+1/2*(1/2*3-1/3*4)+1/2*(1/3*4-1/4*5)
=1/2*(1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5)
=1/2*(1/2-1/20)
=1/2*9/20
=9/40