...应用题做的不行,总丢分,有可能我是因为小学没有学好吧,有什么...
发布网友
发布时间:2024-10-04 23:03
我来回答
共5个回答
热心网友
时间:2024-10-05 01:19
(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再列出含有未知数的代数式,再找相等关系更为合理.
(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.
(3)要养成“验”的好习惯.即所求结果要使实际问题有意义.
(4)不要漏写“答”.“设”和“答”都不要丢掉单位名称.
(5)分析过程可以只写在草稿纸上,但一定要认真.
学习目标
1.了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验;
2.通过对一元一次方程的解法步骤的灵活运用,培养学生的运算能力;
3.通过解方程的教学,了解“未知”可以转化为“已知”的思想.
知识讲解
一、重点、难点分析
本节的重点是移项法则,一元一次方程的概念及其解法,难点是对一元一次方程解法步骤的灵活运用.掌握移项要变号和去分母、去括号的方法是正确地解一元一次方程的关键.学习中应注意以下几点:
1.关于移项.
方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程右边的项改变符号后移到方程的左边.也可以把方程左边的项改变符号后移到方程的右边.移项中常犯的错误是忘记变号.还要注意移项与在方程的一边交换两项的位置有本质的区别.如果等号同一边的项的位置发生变化,这些项不变号,因为改变某一项在多项式中的排列顺序,是以加法交换律与给合律为根据的一种变形,但如果把某些项从等号的一边移到另一边时,这些项都要变号.
2.关于去分母
去分母就是根据等式性质2在方程两边每一项都乘以分母的最小公倍数.常犯错误是漏乘不含有分母的项.如把 变形为 这一项漏乘分母的最小公倍数6,为避勉这类错误,解题时可多写一步. 再用分配律展开.再一个容易错误的地方是对分数线的理解不全面.分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上,如上例提到的.
3.关于去括号.
去括号易犯的错误是括号前面是负号,而去括号时忘记变号;一个数乘以一个多项式,去括号时漏乘多项式的后面各项.如 及 都是错误的.
4.解方程的思路:
解一元一次方程实际上就是将一个方程利用等式的性质进行一系列的变形最终化为 的形式,然后再解 即可.
二、知识结构
三、教法建议
1.本小节开头的两个例子的目的是引入移项法则.移项法则不仅适用于解方程,而且
适用于解不等式;不仅适用于移动整式项,而且适用于移动有意义的非整式项.因此说移项法则是等式性质1的推论不太合理.但对初一学生来说,用等式性质1来引入移项法则是容易接受的.
第一个例子是解方程 学生见到这种方程后,如果先想到用小学里学过的逆运
算的方法来求解,那么教师应告诉学生,我们现在要学习一种新的解法,它能用来解较为复
杂的方程,请大家先回忆在本教科书第一章中的解法,然后启发学生根据等式性质1来解这
个方程.
在分析方程 的解法过程中,教科书提出了移项法则,即方程左边的项可以在改变符号后移到方程右边;在分析方程 的解法过程中,教科书又提出方程右边的项可以在改变符号后移到方程左边.讲完这两个例子后,要引导学生归纳出移项法则——方程中的任何一项,都可以在改变符号后,从方程的对边移到另一边.教学中可以利用教科书上的两个图来讲移项法则,以帮助学生理解.
2.①判定一个方程是不是一元一次方程,先将方程经过去分母、去括号、移项、合并同类项等变形.如果能化为最简形式 ,或标准形式 ,那么,它就是一元一次方程;否则,就不是一元一次方程.
②方程 或 ,只有当 时,才是一元一次方程;反之,如果明确指出方程 或 是一元一次方程,就隐含着已知条件 .
3.①所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在方程的一边交换两项的位置;
②移项时要变号,不变号不能移项.
4.在定义了一元一次方程之后,教科书总结了解这类方程的一般步骤.这时要强调指出,由于方程的形式不同,在解方程时这五个步骤并不一定都要用到,并且也不一定完全按照这个顺序.例如,教科书中本小节的例1、例2就没有去括号的问题,例3、例4没有去分母的问题;又例如,在解方程 时,先移项比先去括号更为简便.因此对于解一元一次方程的一般步骤,要根据具体情况灵活运用,不宜死套.另外还应指出,在上述一般步骤中的第四步“合并同类项”,“把方程化成 的形式”是其中必不可少的一步,在教学中应予以强调.
5.例7和例8是本小节最后一个小阶段中的两道例题.例7是稍为复杂的题目,在方程的分母中含有小数.可以向学生说明,通常将分母中的小数化成整数,然后通过去分母等
步骤来求解.另外,当方程比较复杂时,由于解题步骤较多,容易出错,要求学生必须验根,检验答案是否正确,但检验不是必要步骤.
例8可看作解一元一次方程的一个应用:在一个公式中,有一个字母表示未知数,在其余字母都表示已知数时求这个未知数的值.这类问题在实际应用中和在学生以后学习物理、
化学等课程时,都经常会遇到,因此在教学中要予以足够的重视.
典型例题
例1 判断下面的移项对不对,如果不对,应怎样改正?
(1)从 得到 ;
(2)从 得到 ;
(3)从 得到 ;
(4)从 得到 ;
分析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变.
解:(1)不对,等号左边的7移到等号右边应改变符号.正确应为:
(2)对.
(3)不对.等号左端的-2移到等号右边改变了符号,但等号右边的 移到等号左边没有改变等号.正确应为:
(4)不对.等号右边的 移到等号左边,变为 是对的,但等号右边的-2仍在等号的右边没有移项,不应变号.正确应为:
例2 解方程:
(1) ; (2)
(3) ; (4)
分析:本题都是简单的方程,只要根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.
解:(1)把 的系数化为1,根据等式的性质2.在方程两边同时除以3得,
检验 左边 ,右边
左边=右边.
所以 是原方程的解.
(2)把 的系数化为1,根据等式的性质2,在方程两边同时除以4得, .
检验:左边 ,右边=2,
左边=右边
所以 是原方程的解.
(3)把 的系数化为1.根据等式性质2,在方程的两边同时乘以 得,
检验,左边
右边
左边=-右边,
所以 是原方程的解;
(4)把 的系数化为1,根据等式的性质2,在方程两边同时乘以-2得:
检验:左边 ,右边 ,
左边=右边.
所以 是原方程的解.
说明: ①在应用等式的性质2把未知数的系数化为1时,什么情况适宜用“乘”,什么情况下适宜用“除”,要根据未知数的系数而定.一般情况来说.当未知数的系数是整数时,适宜用除;当未知数的系数是分数(或小数)适宜用乘.(乘以未知数系数的倒数).②要养成进行检验的习惯,但检验可不必书面写出.
祝你学习进步哦。
热心网友
时间:2024-10-05 01:17
如果你简单的解一元一次方程会的话,应用题自然好做
解应用题最最重要的就是理解题目的意思,然后从中找关系
至于关系,你就要看什么数和什么数相等
我以前也是学不好一元一次方程,我到下学期时去补课,后面还学三元一次方程...
所以如果家里有条件就尽量去上补习班
方程用的就是等量关系,所以理解题目后就应找出相关的等量关系
还要多做题...这是废话
加油吧~我也是这么过来的,虽然我一元一次方程以前也有很大问题...
热心网友
时间:2024-10-05 01:19
你是因为方法不熟还是会做但是不认真呢?先多做一些简单的方程题,这样保证你算数不会算错。然后做比较复杂的题的时候不要求快,先稳着来,一步一步地按部就班地做。一定要规范地做。然后再开始追求速度。熟能生巧这个词是很对的。如果这样还经常做错,那就暂时不要管,但是你要保证方法都会了。以后还会有很多时候要用到一元一次方程,有的是机会练,等练多了就会了,别太担心,呵呵。但是!一定要保证你对解题方法熟悉了,准确率可以再练,但是方法必须学扎实
热心网友
时间:2024-10-05 01:16
与生活中的事联系起来,这样记忆起来就容易一些,例如你和你朋友要分一定的东西,你分了多少,他就只能得到多少。数学不是做得多就会学得好的,要经常在做题的时候思考,去联系生活中的方方面面。才能效率高地学习
热心网友
时间:2024-10-05 01:20
其实一元一次方程并不难,在你心里必须树立这个想法,这样才会有信心去学好它,所有应用题都是根据实际来出的,它们本质就是一个小方程而已,有什么难,不要让应用题的背景迷惑了你,遇见题要多读几遍题干,一定把意思理解清楚,透彻,看见不会的题千万别害怕,或放弃,你要相信难者不会,会者不难,不要挺别人说难你就也说难,或者不做了,做题多一点当然是必须的,但也别盲目做,要学会归纳,把各种类形的题分别放在一块,找出哪种类型的应用题是你的弱项,在专门攻这种类型的题,错题一定要整理,过段时间拿出来看看,加强理解。
一定要认清你为什么丢分,丢分的原因,如果计算错误,粗心,就多做一些解方程的题,如果列不出方程,就按我上面给你说的方法,准没错,包你数学成绩好。