求函数f(x)=x²-2ax-1在区间【0,2】上的最大值和最小值 不胜受恩感激...
发布网友
发布时间:2024-10-05 01:14
我来回答
共1个回答
热心网友
时间:2024-10-06 10:13
解:对称轴x=a
当a<=0时,f(x)在[0,2]单调递增
∴f(x)max=f(2)=3-4a
f(x)min=f(0)=-1
当0<a<=2时,f(x)在[0,a]递减,在(a,2]递增
f(x)min=f(a)=-a^2-1
f(0)=-1
f(2)=3-4a
(1) f(0)>=f(2)即-1>=3-4a
a>=1
∴当1<=a<=2时 f(x)max=f(0)=-1
f(x)min=f(a)=-a^2-1
(2) f(0)<f(2)即-1<3-4a
a<1
∴当0<a<1时 f(x)max=f(2)=3-4a
f(x)min=f(a)=-a^2-1
当a>2时,f(x)在[0,2]单调递减
∴f(x)max=f(0)=-1
f(x)min=f(2)=3-4a
综上所述:当a<=0时,f(x)max=f(2)=3-4a
f(x)min=f(0)=-1
当0<a<1时,f(x)max=f(2)=3-4a
f(x)min=f(a)=-a^2-1
当1<=a<=2时,f(x)max=f(0)=-1
f(x)min=f(a)=-a^2-1
当a>2时,f(x)max=f(0)=-1
f(x)min=f(2)=3-4a