发布网友 发布时间:2022-04-21 15:25
共1个回答
热心网友 时间:2023-11-14 21:20
迭代算法就是实现数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程的方法。
最常见的迭代法是牛顿法。其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。
迭代法的应用:
迭代法的主要研究课题是对所论问题构造收敛的迭代格式,分析它们的收敛速度及收敛范围。迭代法的收敛性定理可分成下列三类:
1、局部收敛性定理:假设问题解存在,断定当初始近似与解充分接近时迭代法收敛。
2、半局部收敛性定理:在不假定解存在的情况下,根据迭代法在初始近似处满足的条件,断定迭代法收敛于问题的解。
3、大范围收敛性定理:在不假定初始近似与解充分接近的条件下,断定迭代法收敛于问题的解。
迭代法在线性和非线性方程组求解,最优化计算及特征值计算等问题中被广泛应用。