发布网友 发布时间:2022-05-09 13:24
共1个回答
热心网友 时间:2024-01-30 16:17
解:过点D分别作DE⊥AC,DF⊥AB交AC,AB于点E,F,过点C作CG⊥AB交AB于点G∵AD是△ABC的角平分线∴△ADE≌△ADF∴DE=DF∵∠BAC=60°∴∠DAE=∠DAF=30°设DE=DF=a则AD=2aAE=AF=√3a则CE=2-√3aBF=3-√3a由余弦定理,得BC²=AB²+AC²-2AB×AC×cosA=7解BC=√7∵∠A=60°又CG⊥AB∴CG=AC×cos30°=√3∴S△ABC=AB×CG/2=3√3/2由S△ABC=S△ADC+S△ADB得3√3/2=(a×3+a×2)/2解得a=3√3/5