发布网友 发布时间:2022-05-10 19:49
共1个回答
热心网友 时间:2023-10-26 01:20
1.CA-B=2C,所以C(A-2E)=B,之后求出A-2E的逆矩阵,然后用B×(A-2E)^(-1)就是矩阵C。 2.首先证明向量组n1+n2,n2+n3,n3+n1是Ax=0的解, 这很明显,因为A(n1+n2)=0,A(n2+n3)=0,A(n3+n1)=0,所以向量组n1+n2,n2+n3,n3+n1是Ax=0的解。 接下来证明向量组n1+n2,n2+n3,n3+n1线性无关,用反证法, 假设向量组n1+n2,n2+n3,n3+n1线性相关,那么有k1(n1+n2)+k2(n2+n3)+k3(n3+n1)=0, 即(k1+k3)n1+(k1+k2)n2+(k2+k3)n3=0,因为n1,n2,n3是齐次线性方程组Ax=0的一基础解系, 所以有k1+k3=0,k1+k2=0,k2+k3=0,解得k1=k2=k3=0,所以n1+n2,n2+n3,n3+n1线性无关。 所以向量组n1+n2,n2+n3,n3+n1,也是Ax=0的一基础解系。