(高中数列综合题)
发布网友
发布时间:2022-05-23 02:31
我来回答
共2个回答
热心网友
时间:2023-05-18 06:54
(1)解:∵数列{a[n]}点(a[n],a[n+1])在直线y=2x+1上
∴a[n+1]=2a[n]+1
即:a[n+1]+1=2(a[n]+1)
∵a[1]=1
∴{a[n]+1}是首项为a[1]+1=2,公比也是2的等比数列
即:a[n]+1=2*2^(n-1)=2^n
∴a[n]=2^n-1
(2)解:∵数列{b[n]},b[n]/a[n]=1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1] (n≥2,n∈N)
设c=1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1]
∴b[n]=ca[n],b[n+1]=a[n+1](c+1/a[n])
∴b[n+1]a[n]-(b[n]+1)a[n+1]
=a[n+1](c+1/a[n])a[n]-(ca[n]+1)a[n+1]
=a[n+1](ca[n]+1)-a[n+1](ca[n]+1)
=0
(3)证明:
∵2^n-2^(n-1)=2^(n-1)≥1
∴2^n-1≥2^(n-1)
即:1/(2^n-1)≤1/2^(n-1)
∴1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1]+1/a[n]
=1/(2^1-1)+1/(2^2-1)+1/(2^3-1)+...+1/(2^n-1)
≤1/2^0+1/2^1+1/2^2+...+1/2^(n-2)
=[1-1/2^(n-1)](1-1/2)
=2[1-1/2^(n-1)] (n≥2)
<5 【1】
∵1+b[n]
=1+a[n](1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1])
=a[n](1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1]+1/a[n])
=a[n+1](1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1]+1/a[n])(a[n]/a[n+1])
=b[n+1](a[n]/a[n+1]) (n≥2) 【2】
又∵b[1]=a[1]=1
∴b[2]=a[2]/a[1]=3
∵b[n+1]/a[n+1]=1/a[1]+1/a[2]+1/a[3]+...+1/a[n-1]+1/a[n]
∴由【1】知:b[n+1]/a[n+1]<5
∴由【2】知:
(1+b[1])(1+b[2])(1+b[3])...(1+b[n])
=2b[3](a[2]/a[3])b[4](a[3]/a[4])...b[n+1](a[n]/a[n+1])
=2b[3]b[4]...b[n+1]/a[n+1]
=(2b[n+1]/a[n+1])[1/(b[1]b[2])]b[1]b[2]b[3]b[4]...b[n]
<(10/3)b[1]b[2]b[3]b[4]...b[n]
热心网友
时间:2023-05-18 06:55
我只做出来第一节。
a<n+1>=2an+1
则a<n+1>+1=2(an+1),即a<n+1>+1/(an+1)=2
∴数列{an+1}是一个首项为a1+1=2,公比为2的等比数列,
其通向公式为an+1=2×2^(n-1)=2^n
∴an=2^n-1
当n=1时,a1=2^1-1=1,满足an=2^n-1
∴数列{an}的通项公式为an=2^n-1(n≥1)