发布网友 发布时间:2022-05-18 06:37
共3个回答
热心网友 时间:2023-10-10 11:33
不一样吧,偏差是差的平方,方差是平方的差,标准偏差是偏差的平方根,标准差是方差的平方根。他们的意义也是不一样的,方差偏向反映的是离散的程度, 偏差偏向反映的是离散的度,两者相符相承。热心网友 时间:2023-10-10 11:34
标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。追答1.方差s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/n (x为平均数) 2.标准差=方差的算术平方根
编辑本段公式详解及示例
标准差也被称为标准偏差,或者实验标准差,公式如上所示。 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接*均值。 例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为18.71分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 如是总体,标准差公式根号内除以n 如是样本,标准差公式根号内除以(n-1) 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1) 公式意义 所有数减去平均值,它的平方和除以数的个数(或个数减一),再把所得值开根号,就是1/2次方,得到的数就是这组数的标准差。
热心网友 时间:2023-10-10 11:34
一样的
公式是
追问上网搜好像不一样啊。。。。。