发布网友 发布时间:2022-04-22 00:59
共2个回答
热心网友 时间:2023-09-24 20:06
求函数f(x,y)=100x^(3/4)y^(1/4)满足约束条件 150x+250y=5000 的极值;
解:定义域:x≧0,y≧0;
作函数F(x,y)=100x^(3/4)y^(1/4)+λ(150x+250y-5000);
令∂F/∂x=75x^(-1/4)y^(1/4)+150λ=0;即有75(y/x)^(1/4)=-150λ..........①
∂F/∂y=25x^(3/4)y^(-3/4)+250λ=0;即有 25(x/y)^(3/4)=-250λ.................②
150x+250y-5000=0..............................................③
①÷②得 3(x/y)^(-1/2)=3/5,即3√(y/x)=3/5,y/x=1/25;x=25y;
代入③式得4000y-5000=0,即y=5/4,x=125/4;即得驻点(125/4,5/4);
故得极大值f(x,y)=f(125/4, 5/4)=100×[(125/4)^(3/4)]×(5/4)^(1/4)=625√5;
注:
热心网友 时间:2023-09-24 20:06
Z = 3(x+y)-x3-y3 Z'x = 3-3x2 =0 Z'y = 3 -3y2 =0 极值点 x =±1,y= ±1--(极值点) A= Z''xx =-6x B= Z''xy = 0 C= Z''yy = -6y B2-AC=-36xy-----------(判别式)<0 有极值 x=y=1 取极大值:Zmax=4 x=y=-1 取极小值:Zmin=-4